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Systematic coarse-graining of epoxy resins with machine
learning-informed energy renormalization
Andrea Giuntoli1,2, Nitin K. Hansoge2,3, Anton van Beek 2,3, Zhaoxu Meng 4✉, Wei Chen 2,3✉ and Sinan Keten 1,2,3✉

A persistent challenge in molecular modeling of thermoset polymers is capturing the effects of chemical composition and degree of
crosslinking (DC) on dynamical and mechanical properties with high computational efficiency. We established a coarse-graining (CG)
approach combining the energy renormalization method with Gaussian process surrogate models of molecular dynamics simulations.
This allows a machine-learning informed functional calibration of DC-dependent CG force field parameters. Taking versatile epoxy resins
consisting of Bisphenol A diglycidyl ether combined with curing agent of either 4,4-Diaminodicyclohexylmethane or polyoxypropylene
diamines, we demonstrated excellent agreement between all-atom and CG predictions for density, Debye-Waller factor, Young’s
modulus, and yield stress at any DC. We further introduced a surrogate model-enabled simplification of the functional forms of 14 non-
bonded calibration parameters by quantifying the uncertainty of a candidate set of calibration functions. The framework established
provides an efficient methodology for chemistry-specific, large-scale investigations of the dynamics and mechanics of epoxy resins.

npj Computational Materials           (2021) 7:168 ; https://doi.org/10.1038/s41524-021-00634-1

INTRODUCTION
Computational design of high-performance epoxy resins calls for
methods to circumvent costly experiments. Chemistry-specific
molecular models are critically needed to bridge the gap in scales
between molecular dynamics (MD) simulations and experiments,
while predicting accurately the highly tunable macroscopic
properties of epoxy resins and their composites1–3. This remains
a challenging problem to tackle due to the chemical complexity4–6

of epoxy resins, the high number of properties that must be
targeted for realistic predictions, and their strong dependence on
the degree of crosslinking (DC)7–12. This up-scaling problem
requires multi-dimensional functional calibration, taking inputs
from high-fidelity simulations such as all-atomistic simulations. All-
atom (AA) MD simulations have demonstrated great success in
predicting the effect of DC on the glass-transition temperature
(Tg), thermal expansion coefficient and elastic response13,14 of
epoxy resins, and the fracture behavior of epoxy composites15,16.
This makes AA-MD suitable for informing larger-scale models,
provided that the data required for upscaling is not prohibitively
expensive to obtain. While theoretical tools such as time-
temperature superposition have been instrumental in bridging
temporal scales17,18, AA simulations on their own remain
prohibitively expensive for high-throughput design.
Systematically coarse-grained (CG) models can extend the

length and time scales of MD simulations by orders of magnitude,
but chemistry-specificity requires calibration of a complex force-
field to match the properties of underlying AA simulations or
experimental data. Most CG models proposed for epoxies
matched the structural features19 or the thermomechanical
properties20,21 for highly-crosslinked networks. Prior models have
generally not addressed the question of transferability of the
model over different temperatures or curing states, which is
challenging because of the smoother energy landscape and
reduced degrees of freedom of CG models compared to AA

models22,23. This particular aspect requires a functional calibration
of the force-field parameters against DC, temperature (T), or any
other variable over which transferability is desired. Machine
Learning (ML) tools can efficiently handle such a parametric
functional calibration in a complex force field. Despite the growing
interest in utilizing ML approaches to CG modeling24–26, complex
chemistries such as epoxy resins have not been explored
extensively. Progress was made on this issue in a recent epoxy
CG model27 where a particle swarm optimization algorithm was
used to calibrate a T-dependent force-field for three different
curing states with elastic modulus as the only target property. A
general CG framework for epoxy resins that can target multiple
properties at different DCs and demonstrate the method for more
than one cure chemistry remains to be established. An accurate
description of the dynamics and mechanical properties of partially
cured epoxies is particularly relevant in the context of epoxy-
based composites, where the exploitation of partial and multi-step
curing processes can lead to enhanced performance of the epoxy
resin for storage, additive manufacturing or functionalization28.
Additionally, a model that can account for differences in curing
degree across the material can be used to capture gradient
properties within interphase regions of composites like CFRP29.
To address this issue, here we simultaneously target the DC

dependence of density, dynamics, modulus, and yield strength of
two model epoxy resins. A parametric functional calibration
requires the functional form to be defined a priori30,31. This is not
required by non-parametric methods that construct the calibra-
tion functions through a reproducing kernel Hilbert space32,33.
However, either approach requires additional assumptions when
used to calibrate functions in high-dimensional spaces to avoid
identifiability issues34–36. For this reason, we employ a physics-
informed strategy, leveraging our recently developed energy
renormalization (ER)37 method, which calibrates the non-bonded
interactions of the CG model in a T-dependent fashion to
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match the underlying AA simulation. Based on the generalized
entropy theory of the glass formation38,39, the variation of the
cohesive interaction of the CG model with varying external
parameters allows to tune the activation energy of the system,
which compensates for the different entropic variations of
the AA and CG models caused by the different resolution of the
energy landscape.
Recent ER models for different homopolymers40, molecular

glass-formers41, and biomimetic copolymers42 matched the mean
square displacement at the picosecond time scale, 〈u2〉, to also
predict dynamical and mechanical properties. This is because
〈u2〉 is strongly connected to diffusion41, relaxation time43–45,
shear modulus37, and vibrational modes46 in glass-formers.
Here we extended the ER protocol to a CG model for epoxy

resins, focusing on the DC-transferability and simultaneously
matching the density, dynamics, and mechanical properties of the
systems. We supported our protocol with the use of Gaussian
processes for the calibration of the force field. This particular ML
technique is extremely efficient in treating high-dimensional
parametrizations, and naturally incorporates multi-response cali-
brations. Details of our protocol are reported in the Methods
section. We targeted a system with Bisphenol A diglycidyl ether
(DGEBA) as the epoxy and either 4,4-Diaminodicyclohexylmethane
(PACM) or polyoxypropylene diamines (Jeffamine D400) as the
curing agents. We focused on this versatile system because recent
experiments47–49 on resins prepared using a combination of PACM
and Jeffamines of varying molecular weight showed remarkable
mechanical properties stemming for dynamical heterogeneities at
molecular scales not easily accessible to AA models. For the DC-
dependent parameters of the CG force field, we initially assumed a
relatively high dimension and flexible class of radial basis
functions. For uncertainty quantification purposes, we calculated
the fluctuations of the Gaussian process prediction in response to
perturbations of the optimal solution. This information was then
used to simplify calibration functions while maintaining a
comparable degree of accuracy.
The manuscript is laid out as follows. We first report the target

properties from AA simulations at different values of DC from 0%

to 95%. Then, we define the parametric range for the non-bonded
parameters of the CG models and determine the sensitivity of the
target properties on the CG parameters in this 15-dimensional
range. We train surrogate ML models based on the CG and AA
simulations and we report the optimal functions for all the non-
bonded parameters. Using uncertainty quantification, we simplify
the functional form of the parametrization, resulting in only 21
free parameters needed to calibrate 14 functions. We show that
the optimized CG model has excellent agreement with all eight (8)
target macroscopic properties from the AA simulations. Finally, we
also show that optimal parameters for the target properties also
provide a reasonably good match between AA and CG curves for
the complete mean square displacements and stress–strain
response datasets.

RESULTS
All-atom model target properties
The CG model for the proposed double curing agent epoxy resin
system contains 7 types of beads, and 7 types of bonds and 10
types of angles among them. We aim to functionally calibrate the
parameters of the CG model to simultaneously capture the DC-
dependent density, 〈u2〉, Young’s modulus, and yield stress at
T= 300 K of an underlying AA model. The AA force field here
employed has been validated for similar epoxy systems50,
showing that it captures the glass-transition temperature and
fracture behavior of experimental systems. Details on the AA
model are given in our Methods section. We first calibrate the
bonded parameters using a standard Boltzmann inversion (BI)
approach. More importantly, the non-bonded parameters calibra-
tion was done using Machine-Learning (ML) Gaussian process
models as they are data-efficient51,52 and enable the quantifica-
tion of the modeling uncertainties intrinsic to MD simulations53.
To manage the high dimensionality of inverse functional
calibration, we employ a statistical inference approach to simplify
the underlying function forms. We report a scheme of our CG
model and a flowchart of our parametrization process in Fig. 1.

Fig. 1 Flowchart of the coarse-graining parametrization protocol. a Mapping of the CG beads onto the AA chemical structure for DGEBA,
PACM, and D400. b Generation of the training set of CG simulations varying the non-bonded parameters in a 15-dimensional space (two
parameters per bead, plus the degree of crosslinking) and generating corresponding system responses. c Construction of the Gaussian
process models from the training set to predict the macroscopic response of the AA simulations for given non-bonded parameters, and
sensitivity analysis of each parameter. d Determination of the optimal values of the CG non-bonded parameters at each DC to match the
target properties of the AA models.
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The first step in the calibration of the CG force field was to set
the parameters of the bonded potentials, which was done
through a BI54 approach, to match the probability distributions
informed from AA simulations. The details of the bonded terms
parametrization are fully reported in our Supplementary Note 1
and Supplementary Fig. 1, and the potential form and parameters
are listed in Table 1.
To determine the non-bonded parameters, we first extracted

initial values for the cohesive energies and bead sizes εi ; σi½ �; ði ¼
1; ¼ ; 7Þ from the AA radial distribution functions of all seven CG
beads of the model using BI. These non-bonded parameters
correctly reproduce the structure of the AA system in CG
representation but fail to capture the macroscopic dynamics and
mechanical properties of the system. This inadequacy makes the
model insufficient to extract quantitative information from the
simulations and guide the experimental design of these materials.
In this study, we treat the non-bonded force field parametrization
as a multi-objective optimization problem where we aim to
determine 14 parameters εi; σi½ �; i ¼ 1; ¼ ; 7ð Þ to simultaneously
match the target density, Debye-Waller factor 〈u2〉, Young’s
modulus, and yield stress at all DCs.
Figure 2 reports the values of density, 〈u2〉, Young’s modulus,

and yield stress of the AA systems for DGEBA+PACM and DGEBA
+D400. We note that the values found for the Young’ modulus of
the high DC systems are in line with experimental results47,49, in
the range of 2.5–3 GPa. For both systems, the density and
mechanical properties increase with increasing DC, while〈u2〉, a
marker of mobility, decreases. This is expected, and more
pronounced in the DGEBA+PACM system, which has stiffer and
less mobile chain networks due to the rigidity of the curing agent
PACM. Flexibility introduced by D400 increases mobility and
reduces density as well as mechanical properties of the DGEBA
+D400 system47. A quantitative comparison of 〈u2〉 between
simulations and future experiments should be done with caution,
since in experiments 〈u2〉 is extracted from the neutron
scattering intensity55, can depend on the scattering wavelength
Q and the very definition of Debye–Waller Factor includes the

whole exponential term DWF ¼ expð� Q2u2
3 Þ, while it is customary

for molecular simulation studies to use the term DWF as a
definition of the 〈u2〉 value extracted from MSD functions56.
Young’s modulus in particular changes differently depending

on DC in the two systems, since the spatial density of crosslinks is
higher in the DGEBA+PACM system due to the lower molecular
weight of PACM compared to D400. In other words, because of
the different chain configurations of the curing agent, increasing
DC leads to different changes in configurational entropy caused
by the reduction in degrees of freedom. In addition, we observe
that the dependence of Young’s modulus on DC is nonlinear,
indicating complex changes of configurational entropy with
increasing DC in the epoxy resin networks.

Non-bonded CG force field: sensitivity analysis
Any fixed parametrization of the CG model is not able to match
the properties of the AA system at all DC values, as we show in
Supplementary Figs. 2 and 3 in our Supplementary Note 2. This
is arguably caused by the different rate with which the
configurational entropy of the AA and CG models changes with
varying DC, similarly to what happens with varying T37. Thus, we
introduced a DC dependence for all non-bonded parameters
εi; σi½ � ¼ ½εi DCð Þ; σiðDCÞ�; ði ¼ 1; ¼ ; 7Þ. In previous models with
highly homogeneous polymers and few CG bead types, it was
possible to study the dependence on temperature with manual
parameter sweeps. ER in these circumstances required only one
T-dependent function to rescale all cohesive energies (the εi)
and another to rescale all the effective sizes of the CG beads (the
σi). We found that this was not possible in our current epoxy
model due to the high complexity of the system, including the
effect of crosslinks and the large amount of CG beads with
different cohesive energies and sizes. Here, we introduced a
generalization of previous protocols that relies on ML to explore
the high-dimensional space of the model parameters. The idea is
to surrogate the AA and CG models with Gaussian random
processes followed by minimizing the difference between the
CG and the AA models for all DC with respect to the calibration
functions. Preserving the seminal idea of the ER procedure, the
protocol outlined in this paper can be easily generalized to any
CG model. We used the simulation data presented in Fig. 2 to
train the AA Gaussian process models: 19 samples for the DGEBA
+PACM system and 20 samples for the DGEBA+D400 system. In
the AA model, DC is the only input variable. For the CG model,
DC and the non-bonded parameters [εi, σi] are the input
parameters. The range of the parameters was determined by
preliminary simulations calibrating the cohesive energies either
to match the dynamics of the AA systems at DC= 0% or the
Young’s modulus at DC= 90% or 95% (the highest DC we can
achieve for the DGEBA+PACM or DGEBA+D400 AA networks
respectively). This gave us extremes for the values of cohesive
energies εi, and we further expanded them by ~20%. We also
selected a range of ~±20% for the σi parameters from the initial
estimate obtained from the BI of the radial distribution
functions. We report the final range for all parameters εi ; σi½ �; ði ¼
1; ¼ ; 7Þ in Supplementary Table 1 of the Supplementary Note 7.
Our ranges were post-validated by our final calibration, as
discussed in the following.
We trained the Gaussian process surrogate models on

700 simulation samples of the CG DBEGA+ PACM system,
which also allowed us to fine-tune the extremes for the
calibration parameters. Then we trained 500 simulation samples
of the CG DGEBA+D400 system, where fewer simulations where
needed thanks to the initial fine-tuning. With these surrogates it
was possible to perform a variance-based sensitivity analysis, as
reported in Fig. 3. This type of analysis provided insight into
how the responses of the surrogate models depend on their
inputs57,58.

Table 1. List of all the bonded interaction parameters of the CG
model obtained from Boltzmann inversion of the distributions of
bonds and angles in the AA simulations, calculated between the
centers of mass of the corresponding CG beads.

Interaction Uij lð Þ ¼ kijðl � lijÞ2
Uijk θð Þ ¼ kijkðθ� θijkÞ2

k kcal/mol·Å2

kcal/mol
l or θ Å
degrees

Bond 1-2 201 3.37

Bond 2-3 22.18 4.65

Bond 4-4 30.25 4.60

Bond 4-5 11.87 3.32

Bond 5-6 49.72 1.88

Bond 6-7 114.6 1.86

Bond 3-5 21.48 2.58

Angle 1-2-3 28.52 165

Angle 2-1-2 45.60 108

Angle 4-4-5 7.18 160

Angle 7-6-7 38.77 138

Angle 6-7-6 43.62 161

Angle 5-6-7 38.01 138

Angle 2-3-5 3.52 120

Angle 3-5-4 7.49 124

Angle 3-5-6 9.15 117

Angle 3-5-3 11.45 120
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As one would expect, the analysis revealed a strong influence of
the σi parameters on the density, while the dynamics and
mechanical properties of the system depend more on the
cohesive energies εi. This separation was already assumed in
previous ER models40 and it was confirmed here. Since the main
sensitivity (white, thinner bars) dominates the total sensitivity
(which includes the higher-order interaction effects between the
input parameters) in all cases, the response of the CG model can
be approximated with a first-degree polynomial. This also
suggests that many of the functional relations between the
forcefield parameters and DC can be described through a linear
function, since the target responses presented in Fig. 2 are also
close to linear. The relative contribution of the different cohesive
energies to our target properties is similar for 〈u2〉, Young’s
modulus, and yield stress. DC is as relevant as the cohesive
energies for〈u2〉 and yield stress, while its role is suppressed for
the Young’s modulus. We notice the prominent influence of the
parameter σ6 on all four measures used here to quantify the
mechanical and dynamical properties of the DGEBA+D400
network. This is expected, as bead 6 is a relatively large bead in
the repeated unit of the longer D400 molecule. As such, bead 6
makes up for ~28% of all the CG beads of the network, and close
to 40% in terms of the bead volume. Variations of σ6 lead to large
changes in the density of the system, as well as dynamics and
mechanical properties.

CG force field optimization and validation
Before the calibration of the CG force-field, we needed to identify
a flexible candidate class of calibration functions for the non-
bonded parameters of the CG model. Previous ER papers40–42 for
simple glass-forming polymers used a sigmoid function for the
temperature dependence of cohesive energy and bead size with
temperature. The choice is theoretically supported38 by the
transition from the Arrhenius regime of liquids at high
temperature to the glassy regime below the glass-transition
temperature Tg, with the supercooled phase in between
dominated by the caging dynamics and α-relaxation processes.
We initially assumed a similar sigmoidal function for DC, roughly
equating an increase in DC to a decrease in temperature given
that both actions slow down dynamics. We found this constraint
to be too restrictive for our systems: minimizing the discrepancy
between the AA and CG response (Eq. (3) in our Methods section)
did not yield a reasonable parametrization using sigmoid
functions alone, as shown by Supplementary Figs. 4 and 5 in
the Supplementary Note 3.
To uncover what functions best describe the DC dependence of

the 14 non-bonded parameters, we employed a class of radial
basis functions (RBF) described in our Methods section. We
assumed that each calibration function shares the same shape
parameter ω and that we have three centers for each calibration

Fig. 2 Target macroscopic properties of the AA simulations. a density, b Debye-Waller factor〈u2〉, c Young’s modulus, and d yield stress as
a function of DC for the DGEBA+PACM and DGEBA+D400 systems. Error bars result from the variance of statistically independent simulations.
Density, modulus, and yield stress increase with increasing DC, while 〈u2〉, related to the mobility of the system, decreases. The
D400 system, with the longer and flexible curing agent, has a lower density, higher mobility, and softer mechanical response. The dependence
of these properties on DC is different in the CG model due to the different changes in configurational entropy caused by the reduction in
degrees of freedom. This is typically discussed for changes in temperature, and here observed during the curing process of the polymer
network. For this reason, a DC-independent parametrization of the CG model cannot fully capture the features of the AA model at all DC
values (see Supplementary Figs. 2 and 3), and an energy renormalization procedure is needed.
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parameter x= [0%, 50%, 100%]. The number of centers can be
increased to capture more complex behavior, but at the cost of
overfitting the data and getting unrealistic approximations of the
‘true’ calibration functions. Our goal was to obtain the simplest
force field that is still able to capture the response of the system.
To demonstrate the effect of an overfitting parametrization, we
include an example in the Supplementary Note 4 (see Supple-
mentary Figs. 6 and 7) where the model has been calibrated at DC
= 5% increments without analytical description.
The approach described so far using RBF for all the parameters

gave us a possible solution for our force-field (see Supplementary
Figs. 8 and 9 in the Supplementary Note 5), but at the cost of a

highly complex parametrization. We wanted to simplify our model
by reducing the degrees of freedom of the parametrization
without affecting the model’s accuracy. Given that our CG and AA
models have intrinsic uncertainty that is approximated with our
Gaussian process models through the assumption of homosce-
dasticity, we calculated the probability that for a specific set of
calibration parameters the CG models came from the same
distribution as the AA models through an objective function that
captures the goodness of fit:

L ε; σð Þ ¼ R1
0

Q4
i¼1

R
YP f CGð Þ

i;P DC; εP DCð Þ; σP DCð Þð Þ ¼ y
� �

P f AAð Þ
i;P CDð Þ ¼ y

� �
dydCDþ

R1
0

Q4
i¼1

R
YP f CGð Þ

i;D DC; εD DCð Þ; σD DCð Þð Þ ¼ y
� �

P f AAð Þ
i;D CDð Þ ¼ y

� �
dydCD;

(1)

where the subscript corresponds to the ith response variable.
Equation (1) has similar properties as a likelihood function and
thus lends itself to be used in an approximate Bayesian
computation scheme to get a posterior approximation of the
parameters that make up the calibration functions. Through a
quasi-random sampling scheme, we approximated the first two
statistical moments of the calibration functions.
The green curves in Fig. 4 show the functions in the RBF class

that maximize the objective function of the CG and AA models
yielding the same target properties, where the uncertainty
quantification for each function is also reported (green band).
Note that some of the calibration functions have a large envelope
of uncertainty (e.g., ε6 and ε7), while others have a small
uncertainty envelope (e.g., σ2 and σ6). If the uncertainty envelope
is small, we were able to make a well-informed decision on the
class of functions that would be most suited to model the non-
bonded force field relation to DC. When the uncertainty bounds
are large, then the choice of function is not consequential to the
calibration accuracy, and we were able to simplify the function. In
essence, the quantified uncertainty provides a decision support
tool that gives modelers insight into what calibration functions are
most significant to the calibration accuracy. The functions’
uncertainty reported in Fig. 4 is a local measure of uncertainty
around the function mean value considering all the target
properties, while the sensitivity analysis of Fig. 3 is a global
measure in the whole parameter space for each property
separately. Still, it is possible to connect the two quantities
considering the joint probability distributions. We discuss this
briefly in our Supplementary Note 8 (see Supplementary Figs. 11
and 12), and we will report these technical findings in detail in an
upcoming paper focused on the statistical analysis approach to
functional calibration.
With this procedure, it was possible to drastically simplify our

parametrization, reducing most functional forms either to linear
functions or constants with changing DC. For the simplification,
we used the results presented in Fig. 4 and considered either a
constant function or a linear function if it would fit within the
envelope of uncertainty (where we preferred constant over linear
as it requires one fewer parameter). With this initial guess, we used
Eq. (3) (see our Methods section) to minimize the squared
difference for the new set of calibration functions. The results of
this simplification are the black lines in Fig. 4: only the parameter
ε3 required an RBF; ε2, ε5, σ1 and σ3 required a linear dependence
on DC, while the remaining 9 parameters could be kept constant.
The number of free parameters needed for this parametrization
was reduced from 43 (all RBF) to 21 (simplified formulation), see
Table 2. We note that once an inference has been made on the
new class of function that can be used for each parameter in
the simplified formulation, the goal is to globally minimize the
discrepancy between the AA and CG models response. As such,
each simplified function (black curves in Fig. 4) is not necessarily

Fig. 3 Sensitivity analysis of the target properties varying
εi;σi½ �and DC across 1200 CG simulations. The main sensitivity
index measures the effect of varying a single input variable on the
output. The total sensitivity analysis measures how changing a
single input variable affects its contribution to the variance of an
output measure while accounting for its interaction with the rest of
the input parameters. The density of the systems (b) is dominated
by the σi variables, as one would expect. Interestingly, DC has a
stronger effect on 〈u2〉 (a) and the yield stress (d) than on the
density and the Young’s modulus (c). The analysis sheds light on the
role of different cohesive energies on the dynamics and mechanical
properties of the systems, and it is a useful tool to guide the ML
parametrization with the physical insight gained on the model.
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an analytical approximation of their respective RBF (green curves).
Some of the trends obtained are in line with our expectations, like
a general increase of ε3 with increasing DC as the main parameter
to control the system’s response, given its preeminent role in
determining the dynamics and mechanical properties of the CG
model, as observed in the sensitivity analysis shown in Fig. 3. The
parameters associated with beads 1-3 (the DGEBA molecule)
showed the strongest trends. This makes sense, as DGEBA is
present in both networks. For the bead sizes in particular, the DC
dependence of both systems is controlled uniquely through

σ1 and σ3, all other bead sizes being kept constant. The increase of
ε2 and ε3 with increasing DC controls the increase of Young’s
modulus, yield stress and 〈u2〉 in the DGEBA+D400 network,
since ε6 and ε7 (part of the D400 molecule) are kept constant. A
downward trend of ε5 (bead represented in both the PACM and
D400 molecules) likely compensates for the effect of ε2 and ε3. We
want to stress that this solution might not be unique, within small
variations of overall accuracy, and the specific details of these
functional calibration parameters will depend on the search space
of the algorithm, the details of the training data set and other
protocol dependent parameters. This is particularly true for
parameters with a large uncertainty envelope, where the model’s
outputs are not strongly affected by variations of the parameter.
Nevertheless, the convergence of the algorithm ensures an
excellent match between the target properties in the AA and
CG force fields, as we show in the following, which is robust
against these variations. For reproducibility purposes, we include
in our supplementary materials our complete data set, inputs and
outputs of all AA and CG simulations, as well as the LAMMPS input
files and structure used to obtain these results.
We report in Table 2 the analytical description of all the

parameters in the simplified formulation shown in the black
curves of Fig. 4. For each parametrization, the ML algorithm
predicted the response of the CG model for all target properties as
a function of DC, which was compared to the values of the same
properties in the AA Gaussian process model through Eq. (3). For
the parametrization shown in Fig. 4, the ML-predicted response of
the CG model compared to the AA values is reported in Fig. 5. For
each target property, the ML interpolation assigned a confidence

Fig. 4 Optimized DC-dependent functions of the non-bonded force field parameters ½εi DCð Þ;σiðDCÞ�. The green curves are RBFs yielding
maximum goodness of fit, see equation (1), between the AA and CG target properties. The green bands quantify the uncertainty of each
parameter, which tells us how sensible the final response of the model depending on the parameter. Where large uncertainties are present,
e.g., in the ε6 and ε7 functions, we were able to modify the class of function of that parameter to either linear or constant without loss of
accuracy of the model’s response, thus simplifying the parametrization. The black curves are obtained after simplifying the class of functions
and minimizing the squared difference in the AA and CG model response. Note that once a new class of functions is chosen, the new function
is not necessarily an approximation of the RBF for each individual parameter. The simplified formulation maintained a fair match59 with the AA
models with an average root mean squared percentage error (RMSPE) of 10%. We did not observe a noticeable loss of accuracy of the model
compared to calibrations of much higher complexity, see Supplementary Figs. 7 and 9.

Table 2. Parameters for the simplified analytical description of all
cohesive energies and bead sizes, as shown in Fig. 4.

Interaction Functional form Interaction Functional form

ε1 (DC) 1.07 σ1 (DC) 5.76–0.14 × DC

ε2 (DC) 0.47+0.52 × DC σ2 (DC) 5.71

ε3 (DC) kT �ð ÞK�1 1:89; 2:21; 3:16½ �T ,
ω=−0.44

σ3 (DC) 3.65–0.45 × DC

ε4 (DC) 1.74 σ4 (DC) 5.36

ε5 (DC) 0.90–0.26 × DC σ5 (DC) 4.04

ε6 (DC) 0.40 σ6 (DC) 5.15

ε7 (DC) 0.12 σ7 (DC) 4.06

21 free parameters are needed to describe the 14 non-bonded parametric
functions. The analytical expression of the ε3 RBF function can be found in
our Methods section.
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interval in addition to the expected value for both the AA and the
CG systems, with larger intervals for complex properties like
the Young’s modulus, that has a higher measurement uncertainty
(see Fig. 2c) and, for the CG model, large sensitivity to the variation
of the force field parameters. The CG prediction is in line with the
AA values for all properties and at any DC.
Our parametrization has a high level of accuracy, and we found

a fair agreement59 (average RMSRE= 10%) between the AA and
CG responses. We also note that the limit on the accuracy of our
prediction lies in the competition between the different responses
(dynamics and mechanical properties in particular), and the ML
protocol proposed is able to obtain a much higher accuracy if
calibrated on individual responses separately, as shown in
Supplementary Fig. 10 of our Supplementary Note 6. A perfect
calibration of 〈u2〉 for the high DC systems for example (Fig. 5a,
e) would require a lower mobility of the CG model, which would
increase the value of the Young’s modulus (Fig. 5c, g) above the
target AA value. Our optimization provided the best solution
taking into account the simultaneous calibration of the targets.
Additionally, this protocol is easily generalizable to any system, for
any set of target properties. Higher accuracy can be achieved, if
needed, at the cost of a more complex force field. We discuss
other possible parametrizations in our Supplementary Notes. We
note that the framework here developed can be generalized to
different systems of high chemical complexity, where a tradeoff
between accuracy and generality of the CG force field must be
considered depending on the goal and application of the model.
Our method can be readily applied to multi-objective parame-
trizations, where proper weights are attributed, tailoring the force
field to specific applications.

Finally, we discuss the results of the CG simulations performed
with the parameters reported in Table 2. The stars in Fig. 5
correspond to the values of the target properties extracted from
CG simulations performed with the simplified parametrization of
Fig. 4, showing the agreement between the CG Gaussian process
prediction and the actual CG simulation.

CG model predictivity beyond target properties
With the validated approach and optimized CG force field
parameters, we now report the overall dynamics and mechanical
response of the CG and AA systems with varying DC.
Figure 6 shows the MSD and stress–strain curves up to 20%

tensile deformation for both DGEBA+PACM and DGEBA
+D400 systems at DC= 0%, 50%, and 90–95% (for PACM and
D400 respectively). The CG curves validate the prediction of
the ML model and show good agreement with the AA values
for 〈u2〉, Young’s modulus, and yield stress of the systems. In
addition to that, the comparison with the AA curves of
corresponding DC shows that by matching modulus and yield
stress, we captured the overall stress under tensile deformation
for the system. By matching the Debye–Waller factor 〈u2〉 we
expected to match perfectly the overall MSD curve at longer
timescales, given theoretical relationships linking the picosecond
caging dynamics to the segmental dynamics of glass-forming
systems and validated in previous ER models for simpler
homopolymers. For the current model, we do not find a strong
evidence of this. Despite matching the picosecond caging
dynamics of the AA and CG systems, the AA has faster dynamics
at longer timescales for the uncrosslinked systems. We are not
sure of the origin of this effect, but it could be caused by the

Fig. 5 Validation of the predictive power of the Gaussian process interpolation. Comparison of the target properties as a function of DC
between the Gaussian process AA model (red lines), the CG model (blue lines) with the simplified parametrization shown in Fig. 4, and the
results of the corresponding CG simulations (black stars). Debye-Waller factor, density, Young’s modulus and yield stress are reported for the
DGEBA+PACM system (a–d) and for the DGEBA+D400 system (e–h). The confidence intervals were obtained from the data of Fig. 2 for the AA
simulations and the design of experiments simulations for the CG model. The error bars on the black stars result from the variance of
statistically independent CG simulations. The parametrization of Fig. 4 gives a fair agreement59 for all our targets from the uncrosslinked
systems to the fully crosslinked epoxy networks (average RMSPE= 10%). The CG simulation data are in line with the ML-CG prediction, and
close to the AA prediction. Slightly higher accuracy is possible with different parametrizations, but at the cost of greatly increasing the
complexity of the force field. We discussed other formulations in our Supplementary Notes.
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variety of CG beads with different sizes and cohesive energy,
which might create a broader spectrum of caging scales and
relaxation times. Despite this discrepancy, the effect is greatly
reduced in the fully crosslinked network of interest for experi-
mental applications, where the system is strongly restrained in the
network conformation and diffusion is suppressed.
Overall, the current parametrization showed a high level of

accuracy and accounted for the variation in the degree of
crosslinking of the network. Even if intermediate DC values might
be less practical for this specific system, the problem of the ER for CG
models is relevant outside of this particular chemistry, and the
protocol outlined in this work can be easily generalized. The
developed ML model has aspects of great relevance: (i) it provides
reliable insight into unknown physics by accounting for the
uncertainty in the training data and the response surface
approximations, (ii) it is computationally tractable compared to fully
Bayesian parametric and non-parametric calibration schemes that are
known to struggle with problems with >10 parameters33. The CG
simulations of this study run ~103 times faster than the AA systems,
simulation size being the same. The increased efficiency of our CG
model makes it possible to investigate epoxy networks beyond the
nanoscale, for instance to examine factors such as heterogeneity or
fracture processes that may exhibit scale dependence.

DISCUSSION
The development of new epoxy resin composites for next-
generation materials requires an understanding of how the

macroscopic properties of the system emerge from its
molecular structure, with a level of precision hard to achieve
in experiments (like tracking the strain and failure of single
covalent bonds), and at scales unachievable with AA MD
simulations (from tens of nanometers up to the micrometer
scale). CG models can address the shortcomings of AA
simulations and focus on critical molecular markers like
crosslink density, vibrational modes, structural heterogeneities,
and localized fracture at larger scales. Still, the creation of CG
models for epoxy resins is in its infancy, because of the high
chemical complexity of these systems and the presence of
crosslinks. In this work, we developed a CG model for epoxy
resins using DGEBA as the epoxy, and either PACM or D400 as
the curing agent, in stoichiometric ratio. Our choice is based on
recent experimental findings47 showing that a combination of a
stiff hardener (PACM) and a more flexible one (Jeffamines) in
the same resin leads to a superior mechanical and ballistic
response. This is caused by the presence of nanoscale structural
and dynamical heterogeneities, which our model will be suited
to address.
Our CG model has been shown to match the dynamics and

mechanical properties of a higher-resolution AA model, which is
consistent with experimental measures47,49. In particular, we
employed functional calibration to match the density, Debye-
Waller factor 〈u2〉, Young’s modulus and yield stress at any
degree of crosslinking of the network at fixed temperature
T=300 K. This is an extension of our ER CG protocol, which was
used in previous publications to match the dynamics and

Fig. 6 CG validation of the ML parametrization. For our DGEBA+PACM and DGEBA+D400 systems the CG parameters chosen for the non-
bonded interactions not only match the target properties we selected (as shown in Fig. 5) but can also predict the whole MSD (a, b) and
tensile stress curves (c, d), validating our choice of targets as good predictors of the systems dynamics and mechanical properties.
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mechanical properties of simpler glass-forming polymer systems
by adjusting the non-bonded interactions of the CG model in a T-
dependent way. Here the external parameter considered is instead
the degree of crosslinking DC of the epoxy network. Additionally,
the chemical heterogeneity of our epoxy system required the use
of multiple different CG beads (7 in this model), leading to 14
adjustable parameters for the non-bonded interactions (ε and σ
for each Lennard-Jones potential, with an arithmetic rule of mixing
for cross-interactions). We calibrated all our parameters in a DC-
dependent way to simultaneously match the four target proper-
ties of the AA system (density, 〈u2〉, Young’s modulus and yield
stress). To find the optimal set of functional calibration parameters
in this high-dimensional space, we developed ML tools that use a
training set of CG and AA simulations to get computationally
efficient surrogates. We leveraged the properties of the surrogate
model to quantify the uncertainty of the calibration functions
εi DCð Þ; σi DCð Þ½ �; i 2 1; ¼ ; 7ð Þ for which we initially assumed a
relatively high dimension and flexible class of radial basis
functions. Subsequently, we used the insight of the uncertainty
quantification to greatly simplify the complexity of the calibration
functions while maintaining an excellent match between the AA
and CG model simulations.
The CG model here reported is ≈103 times faster than AA

simulations and it will allow the investigation of a broad class of
epoxy resins beyond the nanoscale, providing quantitative
predictions to explain experimental findings and to guide the
design of new materials. By introducing bond-breaking events at
large deformations, it would be possible to use this model to
study the fracture and impact resistance of epoxy resin networks.
Our preliminary results show that this model is robust when
multiple curing agents in varying stoichiometric ratio are used, but
a more quantitative analysis will be the focus of a future study.
Thanks to the larger scales achievable by this model, it will also be
possible to investigate the properties of composite systems by
adding nanofillers, polymer matrixes or other elements to the
resin, at size scales of hundreds of nanometers. The ML tools
developed for the parametrization of our model allowed the
extension of the energy renormalization CG protocol to a highly
complex system with multiple target macroscopic properties. The
same scheme can be adopted by the modeling community for the
creation of chemistry-specific CG models of arbitrary complexity,
coupling physical intuition with the computational power of
Gaussian processes for the exploration of the force field
parameters space.

METHODS
Systems preparation
Our simulations were performed with the LAMMPS software60. We
simulated all-atom systems of either Bisphenol A diglycidyl (DGEBA) and
4,4-Diaminodicyclohexylmethane (PACM) or DGEBA and polyoxypropyle-
nediamine (Jeffamine D-400) in stochiometric ratio for the formation of the
cured epoxy resin. For the first system, we placed 768 DGEBA and 384
PACM molecules randomly in a cubic box with periodic boundary
conditions. For the second system, we used 944 DGEBA and 472 D400
molecules. We prepared crosslinked networks at intervals of 5% DC, from
0% to 90% (DGEBA+PACM) or from 0% to 95% (DGEBA+D400), DC= 0%
being the uncrosslinked systems and DC= 100% being the fully cured
network. We could not achieve higher DC values for the AA networks
within reasonable times. We employed the DREIDING force field61, which
we validated for similar epoxy systems in our previous paper50, showing
that the AA model captures the experimental glass-transition temperature
and fracture behavior of the fully cured epoxies, and that is compatible
with the ReaxFF force field62 under tensile deformations. We used LAMMPS
harmonic style for bond and angles, charmm style for dihedrals, umbrella
style for improper interactions and the buck/coul/long pair style for non-
bonded interactions. The atomistic molecules were pre-built with no
hydrogen atoms in the PACM/D400 amine group and an open-ring
configuration for the DGEBA epoxide group, consistent with the final
structure after crosslinking. In our previous work, we found that the

presence of partial charges on the terminal epoxide and amine groups of
uncrosslinked molecules did not have an observable influence on the
dynamics and mechanical properties of the system50. For each of our
systems, we run two independent replicas to enhance the statistics.
For the CG model, we prepared systems of 2000 DGEBA and 1000 PACM

molecules, or 1000 DGEBA and 500 D400 molecules. In our CG
representation, shown in Fig. 1a, we used 5 beads to represent DGEBA
(with only 3 different bead types due to the molecular symmetry), 4 beads
to represent PACM (of two different types), and 15 beads (of three different
types) to represent D400. This choice allowed us to have independent
beads to conveniently use for crosslinking (one for the epoxide group and
one for the amino group). The centers of the beads locate at the center of
mass of the grouped atoms. We note that other mappings might also work,
and have been used in the literature27. We think that the capability of our
ML protocol is robust to variations in the mapping choice, though rigorous
testing of this idea is beyond the scope of this paper. We refer to the
DGEBA beads as beads 1, 2, 3; PACM beads as beads 4, 5; and D400 beads
as beads 5, 6, 7. Bead 5, present both in PACM and D400, corresponds to
the amino group NH2 involved in the crosslinking with the epoxide group
in DGEBA (bead 3 in the CG representation). We used LAMMPS harmonic
style for bond and angles and the lj/gromacs pair style for non-bonded
interactions with the arithmetic rule of mixing: εij= √(εiεj) and σij= (σi+σj)/
2, where εi and σi are the cohesive energy and effective size Lennard–Jones
parameters of the ith bead. The parameters used were inferred from the
AA simulations: bonded interactions via Boltzmann Inversion54 and non-
bonded interactions via the energy renormalization-informed ML algo-
rithm, as described in our Results section.

Crosslinking protocol
We used the Polymatic package63 to create crosslinks in our systems in
cycles of polymerization. In each cycle, the Polymatic algorithm created a
certain number of new bonds between target beads within a distance
criterion, and for each new bond, it updated the topology of the system
and performed an energy minimization using LAMMPS. At the end of each
cycle, a molecular dynamics (MD) step is performed to further relax the
system. The procedure stopped when the desired number of new
crosslinks had been created.
For the AA systems, we created bonds between the carbon atoms of the

DGEBA epoxide group and the nitrogen atoms of the PACM or D400 amine
group within a cutoff distance of 6.0 Å and creating 16 bonds per cycle.
The intermediate molecular dynamics step was performed with a timestep
of 1 fs for 50 ps in total, in NPT ensemble (constant number of particles,
pressure and temperature) at temperature T= 600 K and pressure
P=1 atm. In the CG model, we created 10 bonds per cycle between bead
3 of DGEBA and bead 5 of PACM or D400 within a cutoff distance of 15 Å.
The intermediate dynamics step has a timestep of 4 ps, runs for 200 ps in
total and it is done in NPT ensemble at T= 1000 K and P= 0 atm. The CG
interactions used for the network creation are the preliminary results
obtained via BI, see Fig. 2 for details.
Each amine group can be connected to two DGEBA epoxide groups. In

the formation of our networks, we first prioritized the crosslinking between
an epoxide group and an amine group with no other crosslinks, creating
networks with a DC of up to 50%. After that, we created crosslinks between
amine groups and epoxide groups of DGEBA molecules that are not
already in the same network, to avoid the formation of closed loops
involving only a fraction of the molecules of the system. This restriction
allows up to 75% crosslinked networks, at which point all molecules of the
system are connected to the same network. We applied no restriction after
that, and stopped the procedure when the formation of a new crosslink is
not achieved within 30 MD cycles. This limit was at DC= 90% for the
atomistic DGEBA+PACM system, at DC= 95% for the AA DGEBA+D400,
and at DC > 99% for the CG systems. The data production of this work used
these networks with varying chemistry and DC as starting points.

Data production
After a short run with a non-bonded soft potential at T= 300 K and P=
0 atm to remove overlapping atoms, we followed previous annealing
protocols64 to reach an equilibrated state (signaled by zero residual stress
in the system) at room temperature and pressure in the NPT ensemble. For
the AA systems, we used a timestep of 1 fs. We first increased the
temperature to T= 600 K and the pressure to P= 1000 atm in 50 ps in NPT
ensemble, then equilibrated the system for 100 ps at high T and P, then
quenched down to T= 300 K and P= 0 atm in 100 ps and finally
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equilibrated at T= 300 K and P= 0 atm for 200 ps. The mean square
displacement of the systems was calculated after the equilibration, for the
following 100 ps, then a tensile deformation was performed in the NPT
ensemble at strain rate _ε ¼ 0:5e9s�1. 〈u2〉 was calculated from the mean
square displacement at t*= 3 ps, following previous protocols40. The
choice of the timescales was made to obtain an equilibrated system within
a reasonable computational time. The tensile deformation was performed
separately in three different directions, i.e., x, y, and z to obtain improved
statistics of the mechanical properties of the systems. The Young’s
modulus was calculated from the slope of the stress curve during the
tensile test within total strain= 2%. The yield stress was calculated at the
intersection of the stress curve with a fit of the Young’s modulus shifted to
start at strain= 3%.
The CG systems used a timestep of 4 fs. They were first equilibrated at

T= 800 K and P= 100 atm, then quenched to 500 K and 0 atm to relax the
pressure, then quenched in temperature to 300 K and 0 atm, and finally
equilibrated at constant T= 300 K and P= 0 atm. Each of these simulation
phases run for 2 ns. The dynamics was then measured in the equilibrated
state to extract 〈u2〉 and density. A tensile test with strain rate _ε ¼
0:5 ´ 109s�1 (same as the AA simulations) was performed in the NPT
ensemble to extract the Young’s modulus and the yield stress.

Machine learning and functional calibration
A key component of the proposed framework is the adoption of Gaussian
process ML models to replace our costly AA and CG models and
simulations. The motivation for choosing Gaussian process models over
other ML models (e.g., in comparison to artificial neural networks65 and
random forests66) is that they are data efficient and enable the
quantification of prediction uncertainty. The uncertainty quantification
allows us to start with a high-dimensional parametrization with many free
parameters, and simplifying the final solution based on the predicted
uncertainty, as we show in Fig. 4. Gaussian processes naturally incorporate
the multi-response calibration that we need. Finally, we remark that the
convergence of alternative methods such as a particle swarm optimization
algorithm would require millions of CG simulations even for a 30-
dimensional function67 with exponential growth, whereas our protocol
only needed ~1000 CG simulations to converge for a 43-dimensional
problem. For the epoxy model of interest, we trained four Gaussian process
models for the DGEBA+PACM and DGEBA+D400 systems (two CG and
two AA models).
For the Gaussian process surrogates of the CG models, we designed a

set of simulations where each simulation is represented by a point
in a 15-dimensional hypercube (7 εi and 7 σi parameters describing the
non-bonded interactions of the seven beads, plus DC). Since our
two CG networks do not share the same set of CG beads,

we created two experimental designs containing samples xðCGÞi;P ¼
DC; ε1; σ1; ε2; σ2; ε3; σ3; ε4; σ4; ε5; σ5f g ¼ DC; εP; σPf g 2 R11; i ¼ 1; ¼ ; nPð Þ
and x CGð Þ

j;D ¼ DC; ε1; σ1; ε2; σ2; ε3; σ3; ε5; σ5; ε6; σ6; ε7; σ7f g ¼ DC; εD; σDf g 2
R13; j ¼ 1; ¼ ; nDð Þ for the DGEBA+PACM systems and DGEBA
+D400 system, respectively Moreover, nP and nD are the number of
simulations. We then created a design of experiments from a Sobol
sequence, a type of fully sequential space-filling design that has excellent
space-filling properties for any number of simulations68. We obtained two

sets of training data X CGð Þ
P ; Y CGð Þ

P

n o
¼ x CGð Þ

1;P ; y CGð Þ
1;P

n o
; ¼ ; x CGð Þ

nP ;P
; y CGð Þ

nP ;P

n on oT

and X CGð Þ
D ; Y CGð Þ

D

n o
¼ x CGð Þ

1;D ; y CGð Þ
1;D

n o
; ¼ ; x CGð Þ

nD ;P ; y
CGð Þ
nD ;P

n on oT
, where

y CGð Þ
i;P ; i ¼ 1; ¼ ; nPð Þ and y CGð Þ

j;D ; j ¼ 1; ¼ ; nDð Þ are tuples that each contain
the four responses of interest (i.e., density, 〈u2〉, Young’s modulus and
yield stress). Using these samples to train two Gaussian process surrogates
provided us with functions that approximate our CG models at unobserved

sets of input parameters as f ðCGÞP �ð ÞjY CGð Þ
P � N μ

CGð Þ
P �ð Þ;mse CGð Þ

P �ð Þ
� �

and

f ðCGÞD �ð ÞjY CGð Þ
D � N μ

ðCGÞ
D �ð Þ;mse CGð Þ

D �ð Þ
� �

for the DGEBA+PACM systems and

DGEBA+D400 system, respectively. In this formulation, N �ð Þ is a normal

distribution, μ CGð Þ
P �ð Þ and μ

CGð Þ
D �ð Þ are the mean predictions for each of the

four responses, and mse CGð Þ
P �ð Þ and mse CGð Þ

D �ð Þ are the posterior
predictive uncertainties. The �ð Þ symbol stands for all the parameters
on which these functions depend. Namely, in our case,
DC; ε1; σ1; ε2; σ2; ε3; σ3; ε4; σ4; ε5; σ5; ε6; σ6; ε7; σ7f g.
Adopting a similar approach for the AA models, we trained two

Gaussian process surrogates f ðAAÞP �ð ÞjY AAð Þ
P � N μ

ðAAÞ
P �ð Þ;mseðAAÞP �ð Þ

� �
and

f ðAAÞD �ð ÞjY AAð Þ
D � N μ

ðAAÞ
D �ð Þ;mseðAAÞD �ð Þ

� �
on data sets X AAð Þ

P ; Y AAð Þ
P

n o
¼

x AAð Þ
1;P ; y AAð Þ

1;P

n o
; ¼ ; x AAð Þ

nP ;P ; y
AAð Þ
nP ;P

n on oT
and X AAð Þ

D ; Y AAð Þ
D

n o
¼ x AAð Þ

1;D ; y AAð Þ
1;D

n o
;

n
¼ ; x AAð Þ

nD ;D; y
AAð Þ
nD ;D

n o
gT, respectively. Note that for the surrogates of the AA

models the only input is DC, (i.e., the experimental design is only one

dimensional x AAð Þ
i;P ¼ DCf g 2 R; i ¼ 1; ¼ ; nPð Þ and x AAð Þ

i;D ¼ DCf g 2 R;

i ¼ 1; ¼ ; nDð Þ) and y AAð Þ
i;P ; i ¼ 1; ¼ ; nPð Þ and y AAð Þ

j;D ; j ¼ 1; ¼ ; nDð Þ are
tuples that each contain our four responses of interest. Finally, nP and
nD are the number of simulations for the DGEBA+PACM systems and
DGEBA+D400 system, respectively.
A common approach for calibration is to minimize the discrepancy

between the CG and the AA model predicted through the surrogate
models as

ε�; σ� ¼ argmin
ε2E;σ2Σ

P4
i¼1 μ

ðAAÞ
i;P ðDCÞ � μ

ðCGÞ
i;P ðDC; εP; σPÞ

��� ���
L2

þ μ
ðAAÞ
i;D ðDCÞ � μ

ðCGÞ
i;D ðDC; εD; σDÞ

��� ���
L2
;

(2)

where �k kL2 is the L2 norm and the subscript corresponds to the ith
response variable. This is a parametric approach that allows the
identification of a set of parameters that are constant over the space of
DC 2 0%; 100%½ �. However, this assumption greatly limits the flexibility of
the CG models’ responses (i.e., poor calibration performance). We showed
in Supplementary Figs. 2 and 3 that DC-independent parameters are not
sufficient to obtain a good match between the AA and CG models.
Consequently, we required that each parameter has a dependence on
crosslinking density ½εi DCð Þ; σiðDCÞ� described analytically from DC= 0%
to DC= 100%. Using the functional representation and by replacing the L2
norm with the sample average taken over n samples gives

bε �ð Þ; bσ �ð Þ ¼ argmin
ε �ð Þ;σ �ð Þ

1
n

Pn
j¼1

P4
i¼1

μ
AAð Þ
i;P DCj

� �� μ
CGð Þ
i;P DCj ; εP DCj

� �
; σP DCj

� �� �� �2
þ

μ
AAð Þ
i;D DCj

� �� μ
CGð Þ
i;D DCj ; εD DCj

� �
; σD DCj

� �� �� �2
;

(3)

where εP �ð Þ, σP �ð Þ is the set of calibration functions associated with the
non-bonded potentials of the DGEBA+PACM system, and εD �ð Þ, εD �ð Þ is the
set of calibration functions for the non-bonded potentials of the DGEBA
+D400 system. We chose radial basis functions as the class of functions
describing εi; �ð Þσi �ð Þ

� �
; i ¼ 1; ¼ ; 7ð Þ. The general formulation of the RBFs

is given as

εi �ð Þ ¼ kT �ð ÞK�1c; (4)

where kT �ð ÞK�1 is a vector of weights for the nc center points
c ¼ c1; ¼ ; cnc½ �T2 C � Rnc . These center points capture the value that
the approximated non-bonded energies must meet at nc discrete values of
z ¼ z1; ¼ ; znc½ � 2 0%; 100%½ �nc . From these values, the ith element of k(·)

is obtained as kiðDCÞ ¼ exp �ω DC� zið Þ2
� �

: and the ijth element of K is

obtained as Kij ¼ exp �ω zi � zj
� �2� �

:. This leaves the centers c and the

shape parameter ω 2 ½�4; 4� to be inferred through Eq. (2). RBFs are highly
flexibles and allow us to increase the number of centers without worrying
about the bounds of the space C over which c has been defined, as we can
set it equal to the bounds used to generate the training data set of the CG
models. This is important for two reasons (i) we can ensure that we do not
extrapolate from our Gaussian process surrogate models as the search
space is restricted to a hypercube, and (ii) having the search space defined
on a hypercube greatly simplifies the optimization scheme as no
constraints need to be enforced.

DATA AVAILABILITY
The authors confirm that the data supporting the findings of this study are available
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LAMMPS input files and starting configuration files for AA and CG epoxy structures at
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target AA simulations and the CG simulations and a word file with the details needed
to replicate the Gaussian models. Resources available at https://doi.org/10.6084/m9.
figshare.c.5543514.v2. Additional data are available from the corresponding author
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needed to implement the Gaussian process modeling are provided in the figshare
repository https://doi.org/10.6084/m9.figshare.c.5543514.v2. Additional details on the
code used are available from the corresponding author Sinan Keten upon reasonable
request.
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